The position of QB in the photosynthetic reaction center depends on pH: a theoretical analysis of the proton uptake upon QB reduction.

نویسندگان

  • Antoine Taly
  • Pierre Sebban
  • Jeremy C Smith
  • G Matthias Ullmann
چکیده

Electrostatics-based calculations have been performed to examine the proton uptake upon reduction of the terminal electron acceptor Q(B) in the photosynthetic reaction center of Rhodobacter sphaeroides as a function of pH and the associated conformational equilibrium. Two crystal structures of the reaction center were considered: one structure was determined in the dark and the other under illumination. In the two structures, the Q(B) was found in two different positions, proximal or distal to the nonheme iron. Because Q(B) was found mainly in the distal position in the dark and only in the proximal position under illumination, the two positions have been attributed mostly to the oxidized and the reduced forms of Q(B), respectively. We calculated the proton uptake upon Q(B) reduction by four different models. In the first model, Q(B) is allowed to equilibrate between the two positions with either oxidation state. This equilibrium was allowed to vary with pH. In the other three models the distribution of Q(B) between the proximal position and the distal position was pH-independent, with Q(B) occupying only the distal position or only the proximal position or populating the two positions with a fixed ratio. Only the first model, which includes the pH-dependent conformational equilibrium, reproduces both the experimentally measured pH dependence of the proton uptake and the crystallographically observed conformational equilibrium at pH 8. From this model, we find that Q(B) occupies only the distal position below pH 6.5 and only the proximal position above pH 9.0 in both oxidation states. Between these pH values both positions are partially occupied. The reduced Q(B) has a higher occupancy in the proximal position than the oxidized Q(B). In summary, the present results indicate that the conformational equilibrium of Q(B) depends not only on the redox state of Q(B), but also on the pH value of the solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energetics of electron-transfer and protonation reactions of the quinones in the photosynthetic reaction center of Rhodopseudomonas viridis.

The electron-transfer reactions involving the quinones in the bacterial photosynthetic reaction center (bRC) are coupled to a proton uptake by the bRC. In this study, we calculated the energies of the different states of the bRC occurring during these electron-transfer and protonation reactions by an electrostatic model. We considered the possibility that titratable groups of the bRC can change...

متن کامل

Calculated protein and proton motions coupled to electron transfer: electron transfer from QA- to QB in bacterial photosynthetic reaction centers.

Reaction centers from Rhodobacter sphaeroides were subjected to Monte Carlo sampling to determine the Boltzmann distribution of side-chain ionization states and positions and buried water orientation and site occupancy. Changing the oxidation states of the bacteriochlorophyll dimer electron donor (P) and primary (QA) and secondary (QB) quinone electron acceptors allows preparation of the ground...

متن کامل

Reduction and protonation of the secondary quinone acceptor of Rhodobacter sphaeroides photosynthetic reaction center: kinetic model based on a comparison of wild-type chromatophores with mutants carrying ArgCIle substitution at sites 207 and 217 in the L-subunit

After the light-induced charge separation in the photosynthetic reaction center (RC) of Rhodobacter sphaeroides, the electron reaches, via the tightly bound ubiquinone QA, the loosely bound ubiquinone QB. After two subsequent flashes of light, QB is reduced to ubiquinol QBH2, with a semiquinone anion QB formed as an intermediate after the first flash. We studied QBH2 formation in chromatophores...

متن کامل

Identification of the proton pathway in bacterial reaction centers: Inhibition of proton transfer by binding of Zn21 or Cd21 (bacterial photosynthesisyRhodobacter sphaeroidesymetal bindingyproton-coupled electron transfer)

The reaction center (RC) from Rhodobacter sphaeroides converts light into chemical energy through the light induced two-electron, two-proton reduction of a bound quinone molecule QB (the secondary quinone acceptor). A unique pathway for proton transfer to the QB site had so far not been determined. To study the molecular basis for proton transfer, we investigated the effects of exogenous metal ...

متن کامل

Proton transfer pathways and mechanism in bacterial reaction centers.

The focus of this minireview is to discuss the state of knowledge of the pathways and rates of proton transfer in the bacterial reaction center (RC) from Rhodobacter sphaeroides. Protons involved in the light driven catalytic reduction of a quinone molecule QB to quinol QBH2 travel from the aqueous solution through well defined proton transfer pathways to the oxygen atoms of the quinone. Three ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 84 3  شماره 

صفحات  -

تاریخ انتشار 2003